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Introduction

At mathematical contests the problems in the solution of cyclic equation systems or inequality
systems can be found. We call the cyclic set of equations such a set where the equations are
produced by cyclic interchange of variables.

We will not delve into the de�nitions but proceed immediately to the action.

Problem 1 . Solve the set of equations x21 − ax1 + 1 = x22
x22 − ax2 + 1 = x23
x23 − ax3 + 1 = x21

(1)

for all values of a 6= 0 parameter.

Constraint a 6= 0 is natural because it is evident that with a = 0, the system has no solutions.
It can be easily seen that the x1 = x2 = x3 = 1

a triple is the system solution. We will call such
a solution "trivial". On the other hand, if there exists at least one non-trivial solution of x1 = v0,
x2 = u0, x3 = w0, then there are two more solutions obtained by the cyclic interchange of x1 = u0,
x2 = w0, x3 = v0 and x1 = w0, x2 = v0, x3 = u0. The search for non-trivial solutions of this set and
its generalizations is an interesting research challenge, on whose solution we would like to dwell.

I

Before proceeding further, let us have a look at the following problem.

Problem 2 (M770, [1]) The base of the triangular pyramid PABC is the equilateral triangle
ABC. Prove that the pyramid PABC will be regular if the angles PAB, PBC, PCA are congruent.

By having made some additional constructions on the plane(!), we can �t the problem solution
into a couple of passages.

Solution.(S.À. Valerianov) The base side length can be considered equal to 1. Let x1 ≥
x2 ≥ x3 > 0 be the lengths of PA, PB, PC edges, and ∠PAB = ∠PBC = ∠PCA = α. Let us
plot α angle on the plane. On one angle arm we will plot the OK = 1 intercept, while on the other
arm we will plot OP = x1, OQ = x2, OR = x3 intercepts, see Fig. 1. The triangles produced are
congruent to the pyramid face so that RK = x1, PK = x2, QK = x3. Out of the RQK triangle
we have x1 = RK < QR +QK = x2 − x3 + x3 = x2, i.e. x1 < x2 and it is a contradiction. Thus,
x1 = x2 = x3.

At �rst glance, this geometrical problem does not have any relation to the set of cyclic equations.
However, it is not the case. If the cosine theorem is applied to the PAB, PBC, PCA triangles and
if we take a = 2 cosα, 0 < |a| < 2, then we will exactly have the initial set of equations x21 − ax1 + 1 = x22

x22 − ax2 + 1 = x23
x23 − ax3 + 1 = x21.

Pictorial geometrical interpretation of the set for 0 < |a| < 2 parameter values shows that when
x1, x2, x3 are simultaneous positive integers, only one trivial solution exists. The result can be
obtained by "tinkering" with the system.

Solution 2 technique. At �rst, let is divide all equations by a2 6= 0 and substitute the x = x1

a ,
y = x2

a , z =
x3

a variables. We will arrive at the following set x2 − x+ b = y2

y2 − y + b = z2

z2 − z + b = x2,
(2)
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Figure 1: a),b)

where b = 1
a2 > 0.

Having added all equalities, we directly obtain x + y + z = 3b. Let us subtract b2 out of each
equation member and expand into factors x2 − x+ b− b2 = y2 − b2

y2 − y + b− b2 = z2 − b2
z2 − z + b− b2 = x2 − b2

⇔

 (x− b)(x+ b− 1) = (y − b)(y + b)
(y − b)(y + b− 1) = (z − b)(z + b)
(z − b)(z + b− 1) = (x− b)(x+ b).

Let us multiply equations

(x− b)(x+ b− 1)(y − b)(y + b− 1)(z − b)(z + b− 1) = (x− b)(x+ b)(y − b)(y + b)(z − b)(z + b).

Note that if at least one of the variables is equal to b, we will have the trivial solution. Let us
prove that alternative triples of integers, that might serve as the system solutions, do not exist.

Indeed, let x 6= b, y 6= b, z 6= b. Let us reduce similar factors in both equation members and
obtain

(x+ b− 1)(y + b− 1)(z + b− 1) = (x+ b)(y + b)(z + b).

Having opened the brackets, having performed elementary transformations and taking into account
that x + y + z = 3b, we arrive at the equation xy + xz + yz = −(3b − 1)2. It is evident that the
equation does not have positive solutions. Thus, if 0 < x, 0 < y, 0 < z, the only existing solution
is x = y = z = b.

Analysis of the last equation shows that non-trivial solution of the system is also available, and
in this case some of the variables must take the negative values.

II

Geometrical interpretation apart, we will attempt to solve the set, using algebraic methods. In this
process we will eliminate unnecessary constraints on variables and parameters.

We will focus on the solution of set (2) obtained out of set (1) by substitution of the variables.
As we have already noted, adding of all equalities results in x+y+ z = 3b, hence z = 3b−x−y.

Further on, x2 − x+ b = y2

y2 − y + b = (3b− x− y)2
z = 3b− x− y

⇔

 x2 − x+ b = y2

y(6b− 2x− 1) = (3b− x)2 − b
z = 3b− x− y

.
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1) If 6b− 2x− 1 = 0, then x = 3b− 1
2 , then b =

1
4 = x = y = z.

2) If 6b− 2x− 1 6= 0, then y = (3b−x)2−b
6b−2x−1 .

We have

x2 − x+ b =

(
(3b− x)2 − b
6b− 2x− 1

)2

(x2 − x+ b)(6b− 2x− 1)2 −
(
(3b− x)2 − b

)2
= 0.

We already know that there is a trivial solution for the set, therefore, x = b is the root of the
equation obtained. Consequently, the equation left-hand member is divisible by x− b. We have

(x− b)(3x3 − 9bx2 − 3x− 27xb2 + 18bx+ 81b3 − 54b2 + 13b− 1) = 0.

In order to �nd other roots, cubic equation

x3 − 3bx2 + (−9b2 + 6b− 1)x+ 27b3 − 18b2 +
13

3
b− 1

3
= 0 (3)

should be solved.
Usually, the Cardano formulas are proposed for the solution of cubic equations. Certainly, the

students who attend mathematical circles and enrichment classes and, undoubtedly, the mathe-
matical Olympiad participants, can be aware of the Cardano formulas. But the basic di�culty in
application of these formulas emerges in the case when the cubic equation has three real roots. In
this seemingly not complicated case, some operations with complex numbers should be performed
in order to �nd real solutions, and they are too complicate for the school students. Probably for
this reason the Cardano formulas are not included into school curricula.

If we count the discriminant of this cubic equation, we have

4 = (−3b)2
(
−9b2 + 6b− 1

)2 − 4(−9b2 + 6b− 1)3 − 4(−3b)3
(
27b3 − 18b2 +

13

3
b− 1

3

)
+

+18(−3b)(−9b2 + 6b− 1)

(
27b3 − 18b2 +

13

3
b− 1

3

)
− 27

(
27b3 − 18b2 +

13

3
b− 1

3

)2

=

= (12b2 − 6b+ 1)2 > 0.

So, we �nd ourselves in the case with three real roots. We will bypass the above described
complexities, using complex numbers. To do this, we want to propose the alternative method of
solving such cubic equations that is quite readily understandable by school students.

III

Now, we would like to o�er a short theoretical digression based on the paper [2].
Let us consider the auxiliary cubic equation

Ay3 − 3By2 − 3Ay +B = 0, (4)

where A 6= 0 and A,B are real numbers. Let us de�ne: 0 ≤ φ ≤ π, sinφ = B√
A2+B2

, cosφ =
A√

A2+B2
, tanφ = B

A . Under such conditions the φ angle is de�ned unambiguously. We can show

that the following numbers are the roots of equation (4)

y1 = tan
φ

3
, y2 = tan

φ+ 2π

3
, y3 = tan

φ+ 4π

3
.
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By checking we use the identity:

tan(3α) =
tan3 α− 3 tanα

3 tan2 α− 1
.

We insert y = tan φ+2kπ
3 into the left part of equation (4), where k = 0, 1, 2. We have:

A

(
tan

φ+ 2kπ

3

)3

− 3B

(
tan

φ+ 2kπ

3

)2

− 3A tan
φ+ 2kπ

3
+B = 0⇔

A

(
tan3

φ+ 2kπ

3
− 3 tan

φ+ 2kπ

3

)
= B

(
3 tan2

φ+ 2kπ

3
− 1

)
⇔

B

A
=

tan3 φ+2kπ
3 − 3 tan φ+2kπ

3

3 tan2 φ+2kπ
3 − 1

= tan(φ+ 2kπ)⇔ tanφ =
B

A
.

QED.
Let us assume that cubic equation

x3 + px2 + qx+ r = 0 (5)

written in general perms, has three real roots. Consequently, its discriminant is positive:

4 = p2q2 − 4q3 − 4p3r + 18pqr − 27r2 > 0.

Since

4 = −4
(
q − p2

3

)3

− 27

(
2p3

27
− pq

3
+ r

)2

> 0,

then the inequality q − p2

3 < 0 is satis�ed. Under the indicated conditions, equation (5)can be
reduced to equation (4). To do so, we substitute x = my + n into equation (5). We have

(my + n)3 + p(my + n)2 + q(my + n) + r = 0.

To obtain the required equation Ay3 − 3By2 − 3Ay + B = 0 we will open brackets and equate
the coe�cients under similar powers of y. Now we have the set of four equations with four unknown
values of m,n,A,B that can be easily expressed in terms of p, q, r.

m3 = A
m2(3n+ p) = −3B

m(3n2 + 2pn+ q) = −3A
n3 + pn2 + qn+ r = B

⇔


A = m3

n = 9r−pq
2(p2−3q)

m = ±
√
− 3n2+2pn+q

3

B = n3 + pn2 + qn+ r.

Note that we can choose m using two ways, it can also be expressed in terms of discriminant:

m = ±
√
−3n2 + 2pn+ q

3
= ±

√
34

2(3q − p2)
.

We will resort to one of the two modalities for m and taking A = m3,B = n3 + pn2 + qn + r,
we have the equation of the form (4), where the algorithm for �nding the y1, y2, y3 roots is already
known to us. Then, basing on the x = my + n formula, we �nd all solutions of equation (5).

As it can be seen, the proposed method for the solution of cubic equations does not require the
application of complex numbers. Instead, the technique makes use of trigonometric functions that
are easily understandable by school students.

Now, let us put the presented method into practice and solve the equation (3).
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IV

Thus, we look for the solutions of equation

x3 − 3bx2 + (−9b2 + 6b− 1)x+ 27b3 − 18b2 +
13

3
b− 1

3
= 0.

For our equation we have

p = −3b, q = −9b2 + 6b− 1, r = 27b3 − 18b2 +
13

3
b− 1

3
.

Earlier, we have already found the discriminant for this cubic equation

4 = p2q2 − 4q3 − 4p3r + 18pqr − 27r2 = (12b2 − 6b+ 1)2.

Now, we only have to insert the indicated expressions into the formulas

n =
9r − pq

2(p2 − 3q)
= 3b− 1

2
,m =

√
34

2(p2 − 3q)
=

√
3

6
(12b2 − 6b+ 1),

A = m3 =

√
3

72
(12b2 − 6b+ 1)3, B = n3 + pn2 + qn+ r = −4b− 1

24
.

So, the roots of equation (3) are the numbers

x = m tan
φ+ 2kπ

3
+ n =

√
3

6
(12b2 − 6b+ 1) tan

φ+ 2kπ

3
+ 3b− 1

2
,

where k = 0, 1, 2 and

sinφ =
B√

A2 +B2
=

1− 4b√
1
3 (12b

2 − 6b+ 1)6 + (1− 4b)2
.

Taking the trivial solution into account, we see that our system (1) has only four solutions.
Let us illustrate our computations for the value of b = 1

2 parameter. We solve the system x2 − x+ 1
2 = y2

y2 − y + 1
2 = z2

z2 − z + 1
2 = x2,

that gives cubic equation x3 − 3
2x

2 − 1
4x+ 17

24 = 0. Than

sinφ = −
√
3

2
, φ = −π

3
, x =

√
3

6
tan
−π3 + 2kπ

3
+ 1, k = 0, 1, 2.

Hence, the solutions of system (1) with a =
√
2 are four triples

(x1, x2, x3) =

{(
1√
2
,
1√
2
,
1√
2

)
,

(
−
√
6

6
tan

π

9
+
√
2,

√
6

6
tan

5π

9
+
√
2,

√
6

6
tan

11π

9
+
√
2

)
,

(√
6

6
tan

5π

9
+
√
2,

√
6

6
tan

11π

9
+
√
2,−
√
6

6
tan

π

9
+
√
2

)
,

(√
6

6
tan

11π

9
+
√
2,−
√
6

6
tan

π

9
+
√
2,

√
6

6
tan

5π

9
+
√
2

)}
.
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V

We would like to develop the success gained and attempt to generalize cyclic set (1). The easiest
way to reach the generalization is by increasing the number of equations and variables. The gener-
alization is obtained quite easily, but will we succeed in solving the generalized system? Below we
show what can take place in case of four equations and four variables.

Problem 3 . For all values of a 6= 0 parameter solve the set of equations
x21 − ax1 + 1 = x22
x22 − ax2 + 1 = x23
x23 − ax3 + 1 = x24
x24 − ax4 + 1 = x21.

(6)

.

Solution. Let us divide all equations by a2 6= 0, then assume that b = 1
a2 > 0, and substituting

the variables of yi =
xi

a we have 
y21 − y1 + b = y22
y22 − y2 + b = y23
y23 − y3 + b = y24
y24 − y4 + b = y21 .

It follows immediately from the set that y1 + y2 + y3 + y4 = 4b.
Having subtracted the third equation from the �rst one, and the fourth equation from the second

one, we have {
(y1 − y3)(y1 + y3 − 1) = (y2 − y4)(y2 + y4)

(y2 − y4)(y2 + y4 − 1) = −(y1 − y3)(y1 + y3).
(7)

Let us multiply the equations, transfer them to the left-hand member and factorize

(y1 − y3)(y2 − y4) [(y1 + y3 − 1)(y2 + y4 − 1) + (y1 + y3)(y2 + y4)] = 0

(y1 − y3)(y2 − y4) [2(y1 + y3)(y2 + y4)− (y1 + y2 + y3 + y4) + 1] = 0

(y1 − y3)(y2 − y4) [2(y1 + y3)(y2 + y4)− 4b+ 1] = 0.

1) If y1 = y3, then it follows from (7) that y2 = y4. And vice versa, if y2 = y4, then y1 = y3.
Our system is reduced to the set of two equations{

y21 − y1 + b = y22
y22 − y2 + b = y21 .

We have y1 + y2 = 2b⇔ y2 = 2b− y1,

y21 − y1 + b = (2b− y1)2 ⇔ (y1 − b)(4b− 1) = 0.

If b = 1
4 , then we have the family of solutions, y2 = 1

2 − y1. Otherwise, y1 = y2 = b.
2) If y1 6= y3, y2 6= y4, then 2(y1 + y3)(y2 + y4)− 4b+ 1 = 0. Denote u = y1 + y3 ,v = y2 + y4,

and we have {
u+ v = 4b
2uv = 4b− 1.

Whence {
u = 4b−

√
16b2−8b+2

2

v = 4b+
√
16b2−8b+2

2

or

{
u = 4b+

√
16b2−8b+2

2

v = 4b−
√
16b2−8b+2

2 .
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Further on,{
y21 − y1 + b = y22
y22 − y2 + b = (u− y1)2

⇔
{

y21 − y1 + b = y22
y21 − y1 + b+ y22 − y2 + b = y22 + u2 − 2uy1 + y21

⇔

⇔
{
y21 − y1 + b = y22

y2 = 2b− u2 + (2u− 1)y1.

Thus,
y21 − y1 + b = (2b− u2 + (2u− 1)y1)

2

4u(u− 1)y21 + (2(2u− 1)(2b− u2) + 1)y1 + (2b− u2)2 − b = 0.

If u = 0 or u = 1 we have and obtain the identity of 0 ≡ 0, i.e. y1 is any value.
Otherwise,

D = ((2(2u− 1)(2b− u2) + 1)2 − 4 · 4u(u− 1)((2b− u2)2 − b)

y1 =
−((2(2u− 1)(2b− u2) + 1)±

√
D

8u(u− 1)
, y2 = 2b− u2 + (2u− 1)y1,

y3 = u− y1, y4 = 4b− u− y2.

Finally we �nd

y1 =
4b−

√
16b2 − 8b+ 2 +

√
2
√
16b2 − 8b+ 2(4b− 1 +

√
16b2 − 8b+ 2)

4
,

y2 =
4b+

√
16b2 − 8b+ 2−

√
2
√
16b2 − 8b+ 2(−4b+ 1 +

√
16b2 − 8b+ 2)

4
,

y3 =
4b−

√
16b2 − 8b+ 2−

√
2
√
16b2 − 8b+ 2(4b− 1 +

√
16b2 − 8b+ 2)

4
,

y4 =
4b+

√
16b2 − 8b+ 2 +

√
2
√
16b2 − 8b+ 2(−4b+ 1 +

√
16b2 − 8b+ 2)

4
.

Other non-trivial solutions we get by the cyclic interchange.
As we can see, using the appropriate pooling of variables, we succeeded to reduce the cyclic set

of four equations to the sequential decision of several quadratic equations.
As before, we will explicitly calculate the roots for the value of b = 1

2 parameter. We have ,

y1 =
2−
√
2 +

√
4 + 2

√
2

4
, y2 =

2 +
√
2−

√
4− 2

√
2

4
,

y3 =
2−
√
2−

√
4 + 2

√
2

4
, y4 =

2 +
√
2 +

√
4− 2

√
2

4
.
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Figure 2: a),b)

VI

We can compose similar geometrical problem for the case of four variables as we did for the case of
n variables.

Problem 4 n-gon A1A2 . . . An with equal lengths of all sides is the base of PA1A2 . . . An pyramid
(n-gon is not necessarily regular). Prove that if all PAiAi+1, PAnA1 angles are congruent, for
i = 1, 2, . . . , n− 1, then the PA1A2 . . . An pyramid is regular.

Solution. Let us assume that the lengths of the base sides are equal to 1, i.å. A1A2 = A2A3 =
. . . = An−1An = AnA1 = 1.

Let PAi = xi > 0, i = 1, 2, . . . , n and ∠PA1A2 = ∠PA1A2 = . . . = ∠PAn−1An = ∠PAnA1 =
α. If lateral edges are not equal, then there are edges of minimal and maximal lengths. Without
losing generality, we can assume that PA1 = x1 is the minimal length edge. Let PAr = xr be the
maximal length edge. Let us consider the corresponding pyramid faces, which have said edges lying
opposite α angle, i.e. the PAnA1 and PAr−1Ar faces. Now let us proceed similarly to the solution
of problem 2.

Let us plot α angle on the plane. Then we plot OK = 1 intercept on one arm of the angle,
whereas on the other arm we will plot OQ = xn, OR = xr−1 intercepts, see Fig.4. The Figure
displays the case of OQ = xn > OR = xr−1. (The case of OQ = xn < OR = xr−1 is examined
similarly). The triangles produced are congruent to the pyramid faces and so that QK = x1,
RK = xr. From the RQK triangle we have xr = RK < QR + QK = xn − xr−1 + x1, then
xr + xr−1 < xn + x1. Since xr is the maximal length edge, then xr > xn, and since x1 is the
minimal length edge, then xr−1 > x1, so we have arrived at the contradiction. Thus, x1 = xr,and
as long as the minimal and the maximal edge lengths coincide, all pyramid lateral edges are equal.

It remains to show that the pyramid base is a regular n-gon. To do this, it is su�cient to drop
PH, the pyramid height. Since all lateral edges are equal, then all PHAi, right triangles, are equal.
Consequently, all HAi segments are equal, and H is the circumcenter of A1A2 . . . An n-gon. And
since the lengths of all n-gon sides are equal, the �gure is regular. QED.

Actually, we have found and proved the novel property of a regular pyramid!!!

VII

We are aware that in case of an arbitrary n there always exists the trivial solution x1 = x2 = · · · =
xn = 1

a of the system. Besides, if a non-trivial solution also exists, we can �nd some more solutions
obtained using cyclic shift. And though we have not yet solved the cyclic system for an arbitrary
n, it only means that our research can be further pursued at all times .
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Problem 5 (for research) . Solve the below set of equations for n ≥ 5 and all values of a 6= 0
parameter 

x21 − ax1 + 1 = x22
x22 − ax2 + 1 = x23

. . .
x2n − axn + 1 = x21.
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